Notes

Linear Functions

- Equation of a line with gradient m and vertical intercept c is y = mx + c.
- Equation of a line with gradient m and passing through the point (h, k) is y - k = m(x - h).
- Two lines with gradients m, and m, respectively are
 - (i) parallel if $m_1 = m_2$.
 - (ii) perpendicular if $m_1 \times m_2 = -1$.

Ouadratic Functions

- For the parabola $y = a(x h)^2 + k$: turning point is (h, k).
- For the parabola $y = ax^2 + bx + c$: line of symmetry is $x = -\frac{b}{2}$. (this is the x-coordinate of the turning point)
- For the parabola y = a(x p)(x q): line of symmetry is $x = \frac{p+q}{2}$.

(this is the *x*-coordinate of the turning point)

- Parabola has a minimum point if the coefficient of the x^2 term is positive, maximum otherwise.
- For the equation $ax^2 + bx + c = 0$ roots are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c}$

Roots are real and different if $b^2 > 4ac$. Roots are real and repeated if $b^2 = 4ac$. Roots are complex if $b^2 < 4ac$.

Cubics

• For the cubic $y = ax^3 + hx^2 + cx + d$

Factors of $ax^3 + bx^2 + cx + d$	No. of roots
3 distinct linear factors	3
3 linear factors with 2 the same	2
all 3 linear factors the same	1
1 linear and	1
1 non-reducible quadratic	~

Rectangular Hyperbola

$$y = \frac{k}{r - a}$$
 has:

- a horizontal asymptote with equation y = 0.
- a vertical asymptote with equation x = a.

Polynomials

• To find the equation of the given curve: use roots with a multiplier k.

 $y = k (x - a)^2 (x - b)$ Root is repeated when the curve

bounces off the x-axis at that root.

Functions

- A relation *r* between sets X and Y is a rule that associates (maps) elements in set X with elements in set Y.
- A function f between sets X and Y is a rule that associates each element in set X with a unique element in set Y.
- A function *f* has either a 1 to 1 rule or a 1 to many rule.
- The graph of function f passes the "vertical line" test'.

Functions	Domain	Range
$y = \sqrt{x - a} + b$	$x \ge a$	y ≥ b
$y = a^x + b$	\mathbb{R}	y > b
$y = \frac{k}{x - a}$	x≠a	y ≠ 0

Circles are relations with equations that can be written in the form:

$$(x-a)^2 + (y-b)^2 = r^2$$
.

• radius r. • centre (*a*, *b*)

- For y = -k f(-ax + b) + m:
 - 1. Translate *b* units left along the *x*-axis
 - 2. Dilate along the x-axis by factor 1/a
 - 3. Reflect about the 1/-axis
 - 4. Reflect about the x-axis
 - 5. Dilate along the y-axis by factor k
 - 6. Translate m units up along the y-axis
- D

T

D

R

R

Non-Right Triangles

- $\frac{a}{\sin A} = \frac{b}{\sin B}$
- $a^2 = b^2 + c^2 2bc \cos A$
- $\bullet \cos A = \frac{b^2 + c^2 a^2}{2bc}$
- · Area of Triangle $=\frac{1}{2}ab\sin C$

Arcs and Sectors

Angle θ is in radians

- Arc length $s = r \theta$
- Area of sector = $\frac{1}{2}r^2\theta$
- Area of segment = $\frac{1}{2} r^2 (\theta - \sin \theta)$

Exact Values

$\theta_{\mathbf{o}}$	θ rad	sin 0	cos θ	tan θ
0°	0	0	1	0
30°	<u>т</u> б	<u>1</u> 2	<u>√3</u> 2	<u>√3</u> 3
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	<u>π</u> 3	$\frac{\sqrt{3}}{2}$	<u>1</u> 2	√3
90°	<u>π</u> 2	1	0	8

Trigonometric Identities

- $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$
- $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$
- $tan (A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$

• Trig Graphs

	$y = a \sin (bx + c) + d$ $y = a \cos (bx + c) + d$
Mean Line	y = d
Amplitude	[a]
Min./Max. y	Min: $d - a $, Max: $d + a $
Period	$360^{\circ}/b \text{ or } 2\pi/b$
Phase shift	Shifted c/b.degrees/radians to the left

	$y = a \tan (bx + c) + d$
Mean Line	y = d
Period	$180^{\circ}/b \text{ or } \pi/b$
Phase shift	Shifted c/b degrees/radians to the left

Set Notation

Symbol	Meaning	
€	is an element of	
C	is a subset of	
\cap	intersection	
U	union	
n(A) or A	No. of elements in set A	
A' or A	Complement of A	

Combinations

•
$${}^{n}C_{r} \equiv \binom{n}{r} \equiv \frac{n!}{r! (n-r)!}$$

$$= \frac{n \times (n-1) \times (n-2) \times \dots \times (n-r+1)}{r!}.$$

•
$${}^{n}C_{r} = {}^{n}C_{n-r}$$
 or $\binom{n}{r} = \binom{n}{n-r}$.

•
$$\binom{n}{0} = \binom{n}{n} = 1$$
 and $\binom{n}{1} = \binom{n}{n-1} = n$.

- r items can be chosen from n items all different:
 - without replacement in ⁿC_r ways
 - with replacement in n^r ways.

$$(x+y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2$$

$$\dots + \binom{n}{k} x^{n-k} y^k + \dots$$

$$+ \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Probability

- $0 \le P(A) \le 1$.
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cap B) = P(A) \times P(B \mid A)$
- $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- $P(\overline{A}) = 1 P(A)$
- Two events A and B are mutually exclusive if $P(A \cap B) = 0$.
- To show that A and B are mutually exclusive, show that $P(A \cap B) = 0$.
- Two events A and B are independent if P(A | B) = P(A) or P(B) = P(B | A).
- To show that A and B are independent:
 - show that P(A|B) = P(A) or P(B) = P(B|A)
 - or show that $P(A \cap B) = P(A) \times P(B)$.

Indices

$$a^{x} \times a^{y} = a^{x+y} \qquad \frac{a^{x}}{a^{y}} = a^{x-y}$$

$$(a^{x})^{y} = a^{xy} \qquad a^{0} = 1$$

$$\frac{1}{a^{x}} = a^{-x} \qquad \sqrt[n]{a} = a^{\frac{1}{n}}$$

Arithmetic Progression

• General Rule for the *n*th term:

$$T_n = a + (n-1)d$$

• Recursive equation:

$$T_{n+1} = T_n + d$$

$$T_1 = a$$

• Sum of first *n* terms:

$$S_n = \frac{n}{2}[2a + (n-1)d] = \frac{n}{2}(a+l)$$

Geometric Progression

- General Rule for nth term: $T_n = a \times r^{n-1}$
- Recursive equation:

$$T_{n+1} = T_n \times r$$

$$T_1 = a$$

• Sum of first *n* terms:

$$S_n = \frac{a(1-r^n)}{1-r} \quad \text{where } r \neq 1$$

• Sum to infinity for -1 < r < 1:

$$S_{\infty} = \frac{a}{1 - r}$$

Exponential Growth and Decay

- $P(t + 1) = P(t) \times r$ where P(0) = initial value
- $P(t) = P(0)r^{t}$

Differentiation

- $f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \left[\frac{f(x+h) f(x)}{h} \right]$
- $y = a x^n \implies y' = n \times a x^{n-1}$

Rate of change

- The instantaneous rate of change of Q at time t = a is Q'(a).
- The average rate of change between t = a and t = b is $\frac{Q(b)-Q(a)}{b-a}$

Features of graphs	3
y = f(x)	y = f'(x)
max point	<i>x</i> -intercept (crosses <i>x</i> -axis from above to below)
min point	x-intercept (crosses x-axis from below to above)
inflection point	turning point

Stationary & Inflection Points

• For max point at x = a: y' = 0,

x	a a	а	a ⁺
y'	+	0	

• For min point at x = a: y' = 0,

x	a	а	a ⁺
y'	_	0	+

• For horizontal inflection point at x = a:

-			TI POIITE G	
	x	a ⁻	а	a ⁺
	y'	±	0	±

Integration

$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + C \qquad [n \neq -1]$$

Rectilinear Motion

• Displacement at time t, $x = \int v \ dt$

Velocity
$$v = \frac{dx}{dt} = \int a \ dt$$

Acceleration
$$a = \frac{dv}{dt}$$

- Body changes direction when v = 0 and $a \neq 0$.
- Body returns to origin when x = 0.